Analízis Tanszék

BME Természettudományi Kar

2015.11.03. PARABOLIKUS PARCIÁLIS DIFFERENCIÁLEGYENLETEK KVALITATÍV TULAJDONSÁGAI

Előadó: Karátson János

Időpont és hely: 2015. 11. 04., 16:03, H306

A large number of time-dependent real-life phenomena can be modelled mathematically by parabolic partial differential equations. It is a natural requirement that such models possess some characteristic qualitative properties of the original process. For parabolic problems the main qualitative properties are the maximum-minimum principles,  nonnegativity-nonpositivity preservation and maximum norm contractivity, Without them, the model might produce unphysical quantities that contradict reality. We characterize various implications between these qualitative properties, and we give general sufficient conditions to ensure them (both 
separately and all of them together). The relations are illustrated with several examples.

Tanszékvezető:
Dr. Horváth Miklós
egyetemi tanár
Tel.: 06 1 463 2630

Adminisztráció:
1111 Budapest,
Egry József u. 1.,
'H' épület II. em. 26.
Tel.: 06 1 463 2324
Fax: 06 1 463 3172 vagy 2759
This e-mail address is being protected from spambots. You need JavaScript enabled to view it.